Experimental observation of oscillatory cellular patterns in three-dimensional directional solidification.

نویسندگان

  • J Pereda
  • F L Mota
  • L Chen
  • B Billia
  • D Tourret
  • Y Song
  • J-M Debierre
  • R Guérin
  • A Karma
  • R Trivedi
  • N Bergeon
چکیده

We present a detailed analysis of oscillatory modes during three-dimensional cellular growth in a diffusive transport regime. We ground our analysis primarily on in situ observations of directional solidification experiments of a transparent succinonitrile 0.24wt% camphor alloy performed in microgravity conditions onboard the International Space Station. This study completes our previous reports [Bergeon et al., Phys. Rev. Lett. 110, 226102 (2013)10.1103/PhysRevLett.110.226102; Tourret et al., Phys. Rev. E 92, 042401 (2015)10.1103/PhysRevE.92.042401] from an experimental perspective, and results are supported by additional phase-field simulations. We analyze the influence of growth parameters, crystal orientation, and sample history on promoting oscillations, and on their spatiotemporal characteristics. Cellular patterns display a remarkably uniform oscillation period throughout the entire array, despite a high array disorder and a wide distribution of primary spacing. Oscillation inhibition may be associated to crystalline disorientation, which stems from polygonization and is manifested as pattern drifting. We determine a drifting velocity threshold above which oscillations are inhibited, thereby demonstrating that inhibition is due to cell drifting and not directly to disorientation, and also explaining the suppression of oscillations when the pulling velocity history favors drifting. Furthermore, we show that the array disorder prevents long-range coherence of oscillations, but not short-range coherence in localized ordered regions. For regions of a few cells exhibiting hexagonal (square) ordering, three (two) subarrays oscillate with a phase shift of approximately ±120^{∘} (180^{∘}), with square ordering occurring preferentially near subgrain boundaries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical microstructure formation in 3D directional solidification of transparent model alloys: in situ characterization in DECLIC Directional Solidification Insert under diffusion transport in microgravity

To clarify and characterize the fundamental physical mechanisms active in the dynamical formation of three-dimensional (3D) arrays of cells and dendrites under diffusive growth conditions, in situ monitoring of series of experiments on transparent model alloy succinonitrile – 0.24 wt% camphor was carried out under low gravity in the DECLIC Directional Solidification Insert on-board the Internat...

متن کامل

Stability and shapes of cellular profiles in directional solidification: expansion and matching methods

Ideas based on constitutional supercooling suggest that the periodic steady state cellular patterns seen in the directional solidification of systems with small partition coefficient may be unstable if the impurity concentration in the melt just in front of the tips falls into the two phase (miscibility gap) region of the phase diagram. This gives a simple stability criterion relating the posit...

متن کامل

Morphological stability analysis of directional solidification into an oscillatory fluid layer

We study the stability of a planar solid-melt boundary during directional solidification of a binary alloy when the solid is being periodically vibrated in the direction parallel to the boundary (or equivalently, under a far field uniform and oscillatory flow parallel to the planar boundary). The analysis is motivated by directional solidification experiments under the low level residual accele...

متن کامل

Cellular instabilities in directional solidification

2014 We have studied the morphology of the solid-liquid interface during the directional solidification of thin (5-150 03BCm) samples of a dilute binary mixture (CBr4/~ 0.1 % Br2) . Above a critical pulling speed, for a given temperature gradient and solute concentration, the interface, initially planar, breaks down into a periodic cellular pattern. The bifurcation from a planar to a cellular s...

متن کامل

On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 110 22  شماره 

صفحات  -

تاریخ انتشار 2013